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Collision Broadened Resonance Localization in Tokamaks Excited with ICRF Waves *

G. D. Kerbel and M. G. McCoy

National Magnetic Fusion Energy Computer Center
Lawrence Livermore National Laboratory

Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma
theory and allow inhomogeneity in one dimension. The majority of these calculations neglect
the fact that gyro-centers experience the inhomogeneity via their motion parallel to the mag-
netic field. The non-local effects of rotational transform and toroidicity can play a significant
role in both the propagation and the absorption physics. In strongly driven systems, wave
damping can distort the particle distribution function supporting the wave and this produces
changes in the absorption. The most common approach is to use Maxwellian absorption rates
calculated in uniform magnetic field. We have developed a bounce-averaged Fokker-Planck
quasilinear computational model which evolves the population of particles on more realistic
orbits. Each wave-particle resonance has its own specific interaction amplitude within any
given volume element. These data need only be generated once, and appropriately stored
for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by
which the diffusion of particle populations can proceed among neighboring orbits. Collisions
affect the absorption of RF energy by two quite distinct processes: In addition to the usual
relaxation towards the Maxwellian distribution creating velocity gradients which drive quasi-

linear diffusion, collisions also affect the wave-particle resonance through the mechanism of
gyro-phase diffusion.

The local specific spectral energy absorption rate is directly calculable once the orbit
geometry and populations are determined. The code is constructed in such fashion as to
accomodate wave propagation models which provide the wave spectral energy density on a
poloidal cross-section. Information provided by the calculation includes the local absorption
properties of the medium which can then be exploited to evolve the wave field.

RF Power Absorption: Collisionless Theory

The RF power absorbed on a flux surface per unit toroidal extent by resonant particles
can be represented in terms of the quasilinear component of the Fokker-Planck operator:
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where A = wgcosfyry. 75 is the bounce period. and all quantities are represented in the

constants-of-motion (velocity) space (vg,fp). After an integration by parts, the RF power
absorbed can be cast in the form

Prp = —27T/d’l)0 /da() m’t)osilleoBoq,&O?O (1)

where the differential operator 30 is given by
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the bounce-averaged quasilinear coefficient Byg,, can be expressed in the form

2
q
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and the trajectory integral I, appearing in the definition of By , can be represented as

* T , A R
I, = fd*r (Hn(r) e"l’(f)) — / dr’' (Hn(r')e’w(f )) + ce. (2)
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The quantity IT,(7) = vsin§ Ey - ©,, denotes the amplitude of the nt" gyro-harmonic wave-
particle interaction along the unperturbed gyro-center orbit:! It can be viewed as a slowly
varying quantity in the sense that its time variation scales with the bounce time, ie. TI/II ~
wg € 1. The eikonal ¥ given by

t t

\Il(n,t) = /dT (’nQ’ -+ khvh — w) = /d‘r y(n,r) (3)
0 0

represents the advance of the interaction phase. v, along a given gyro-center trajectory. In
large gyration frequency theory, ¥ ~ {dr; > 1, so that ¥ is viewed as rapidly varying, and
(Y7, serves as the large parameter in the asymptotic analysis. The quantity referred to as T,
which accounts for multiple-bounce coherence effects, the stacked echoes of prior resonances,
is generally quite close to unity due to gyro-phase diffusion. This aspect of the theory will
be discussed in more detail presently. First. however. let us examine the collisionless case
neglecting gyro-phase diffusion.

The trajectory integrals in (2) may be approximated asymptotically (27, — oo) by the
method of stationary phase due to the rapid variation with 7 of ¥. The eikonal ¥ is expanded
about the point where d¥/dt vanishes (elsewhere the rapid oscillations provide cancelling
contributions to the integrand). By (3). this implies

t
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the condition of wave-particle resonance. Near the stationary phase points we expand the
(rapidly oscillating phase) factor ¥ as:
ar?t At
O =Wyt VAT + 50— I 4 (5)
2! 3!
AT being measured from the stationary phase point, v(r;) = 0 (ie. At = 7 —7;). Forming
the trajectory integral in a neighborhood of 7;. we can write

+D7 Ar? AT3
.
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Passing to the limit D7 — oo, (6) becomes
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At points for which dB/dr = 0 coincidentally with resonances. not only is v = 0, but also
v = 0. The expansion of ¥ about these points must retain the term in &, the resultant

integral has the form of an Airy integral:
2 i/gAi (V §/§)
7 U

For kj # 0. the coalescence of two resonances can occur where dB/dr # 0 which adds some
new twists to the calculation. This subject is treated in detail in Killeen. et al.!

Associated with the timelike quantity 7. through the evaluation of ¥ at the point of
stationary phase is a certain phase factor (7). It is the advance of this phase between sub-
sequent resonances which determines the single-bounce coherence of sequential wave-particle
interactions. Orbit resonances too close to sense significant gyro-phase diffusion can interfere
constructively or destructively through the action of the relative interaction phase separating

them. Details of the calculation pertaining to this phenomenon are discussed in Kerbel and
McCoy? .

For the simplest case of isolated resonances ( # 0), we can evaluate the (inner) phase
integral in (2) to find

I = f dr (IL(r) %) * TL, ()
T
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The division of a trapped gyro-center trajectory into single-cycle complements C and C' is
shown in Figure 1. Completing the outer integral there results

I, = 412 (7)) )° Y {a(1 = sin20) + (1 - )(1 - sin2W¥,)}, (10)



where we have defined

20, = /d'ru(r); 20! = /dru(r); and «a = /dT/TB.
C ct c
The single-bounce coherence effects appear through the presence of the trigonometric terms

in I, whose arguments are just the advance of the interaction phase between subsequent
resonances (over the two complementary paths comprising a single-bounce cycle).

Collisional Resonant Diffusion

The model just described centers on the mechanism of magnetic decorrelation. Though
a charged particle must be in resonance to interact strongly with the exciting RF fields, it
is not the case that the magnetic correlation time |7.| is the most rational measure of the
strength of the interaction in all cases. In some cases of interest, finite bandwidth wave spectra
give rise to shorter wave-particle correlation times. Moreover, including collisional effects can
significantly alter the calculation of the effective correlation times-especially in cases for which
the magnetic field is nearly uniform-through the mechanism of gyro-phase diffusion. Better
realism. as well as computational convenience and completeness. are among the incentives to
generalize the unperturbed collisionless orbits to include the effects of collisions on an a prior:
basis.

The effect can be most clearly understood by considering the uniform magnetic field case.
In collisionless theory, those ions whose gyro-centers lie on resonant orbits remain in resonance
for all time; ions on orbits nearby in the constants-of-motion space realize no resonant diffusion
whatever. The resonant diffusion thus has measure (one) support in the constants-of-motion
space and has the mathematical form of a generalized function or distribution. This aspect
of the theory allows the analytic evaluation of certain quantities of interest, in particular.
the power absorption. However, in contradistinction to the analytic theory, this (idealized)
structure becomes increasingly difficult to detect with a finite analysis numerical scheme as the
magnetic field inhomogeneity vanishes. For such cases, the (collisionless) magnetic correlation
time is either longer than the gyro-phase diffusion time or undefined. Collisions decorrelate
the wave-particle resonance and limit the energy exchange between the particle and the wave
field. The presence of a large multiplicative factor of the pitchangle scattering rate in the
gyro-phase diffusion is responsible for the importance of this effect even deeply within the
(collisionless) banana regime.

The physical mechanism at work here is clear. Small angle coulomb collisions alter the
trajectory of a particle which is in resonance with the wave field, causing the resonant exchange
of energy between the field and the particle to slow, stop. or reverse. The inverse process can
also occur: A particle not initially on a resonant trajectory can experience resonant interaction
through the mediation of collisional processes.

In order to include the effects of collisions within this formalism, we introduce a gyro-
phase diffusion kernel ®(é¢, A1) = exp(iép) P(ép, AT = 11 — 72) to describe the evolution
during the time interval A7 along a gyro-center trajectory of the probability distribution of cu-
mulative random gyro-phase increments & due to pitchangle scattering. Our aim, once having



chosen a model for calculating ®, will be to perform the ensemble average over increments &p
using the appropriate A, thus revealing the gyro-phase diffused analog to expression (10).
To this end we require that ® have the following properties: (1) fd&qSP = 1, the kernel
is normalized: (2) [dépsp P = 0. it is symmetric: and (3) [dép &P = (A¢?)(Ar) ~
q(uo,oo)u,-,-n?Ar", its dispersion solves Langevin equations for the cumulative diffusion of
the gyro-phase angle due to pitch-angle scattering (see for example Cohen. et al.® ). The
function ~ is of order unity and depends on particulars of the magnetic field geometry.

Applying the diffusion kernel to expression (2) and indicating the appropriate ensemble
average we obtain

I = [ dts § ar (ar)@(E, An)e¥0))’
: (11)
XTI/d&S, / dTI Hn(TI)¢(6¢’)AT,) ei\l’(“") + cc.

where A7 = 7, — 7. A calculation similar to that leading to (9) results in its gyro-phase
diffused counterpart

I, = / dég }[ dr (11,,(7)@(&;5, A7) e"‘”’))‘ ;T;Hn(ra)lrcl
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Choosing a Gaussian model for ® is convenient and adequate for our purposes:

o <P [iss — 8% /2(A¢%)(Ar)]
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Completing the outer 7 integral and performing the ensemble averages over & and &' we
obtain

I, = 2H,21(TR)|TC|2T{(1(1 +e 2P e D' sin 2W})
+(1-a)(l+e 2P —2¢7Psin2W,)}
where D = 2(A¢?)(27;) and Dt = 2(A¢?)(75 — 275). This result expresses the fact that
collisions destroy the phase coherence between subsequent resonant wave-particle interactions

through the cumulative diffusion of the gyro-phase. The factor T representing the gyro-phase
diffused sum over prior bounces of result (13) can be written as

(13)

(e o)

T = Z cosn¥, exp[—2(A¢?)(n1y)] - Z cos n¥, exp|—2+y1;;0%7,°n] (14)
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where W, is the total advance of the interaction phase v over a bounce period.



In reality the wave-particle resonant interactions are not confined to the instants 75, but
rather occur over an interval corresponding in duration roughly to |7.| about 7. For sufficiently
long |7.|. gyro-phase diffusion can generate incoherence during the time |r.|. limiting the
strength of the resonant interaction. This situation arises most notably for shallow magnetic
wells, coalescent resonances. or nearly uniform magnetic field.

To model the intra-resonant effects of gyro-phase diffusion on |7.| implicit in (12-13), we
have applied the diffusion kernel @ in equation (6):

D7
v ‘ AT AFP
|7e,] = /d&;S / dAT ®(6p, At)exp |1 | ¥ + VAT + v + = . (15)
—Dr

Inverting the order of integration over 7(7') and &p(6¢') and passing to the limit Dr — oo
(15) becomes

+oo o
. Ar~©

Dlim |7e,| = | e"¥R(™) /dATexp ’L.l'/—;—- ~7(U0,00)uiiQ2AT3] : (16)
_m B '

The limiting behavior of this integral as © — 0 is readily obtained as

fim [ =

r—0 </ 'yv,-,ﬁ '

However, in actuality, the situation © — 0 represents the coalesence of two resonances as
discussed with regard to (8). Following a procedure similar to that leading from (6-7)—(15-16)
we obtain the corresponding gyro-phase diffused generalization of (8):

+ 00 N
|Te] = etvr /dAT exp [i (UAT + u%;—) - ’Y(UD,OO)UiiQQATS]
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The physical significance of this result is the existence of a boundary layer in the
constants-of-motion space about the collisionless (undiffused) resonance whose width scales
as Yvi;. The effect is closely related to that reported by Auerbach® in connection with Lang-
muir wave damping. He notes that in the collisionless limit the perturbed distribution in the
boundary layer scales as 1/{/v;; so that the damping rate is independent of collisionality.
Collisionally broadened gyro-center orbits in the layer experience resonant interaction with the
wave field and thus contribute to absorption. Since this boundary layer retains a calcula-
ble structure in the uniform field limit, our numerical scheme can be used to recover results
accessible to analytic theory as well.

Resonance Localization

In order to determine the spacial (poloidal) variation of RF power absorption we introduce
a numerical resonance broadening model which replaces the exponential in the integrand of (2)



by a resonance weighting function w(7) and represent the phase integral in (2) mnemonically
by

/ dr I, () e () . / dr Iy 7] w(7) (18)

where |7.| is identified through (7-8) or their collisional counterparts (16-17). The weighting
function w(r) is defined such that [drw(r) = L. it is normalized: [drrw(r) = 7, it
is centered on the wave-particle resonance: and finally. [ dr (1 — 72)%w(r) = 7|2, its width
corresponds to the wave-particle correlation time. The unmodified application of the stationary
phase method corresponds to a weighting function with point support, w(r) = §(r — 7).
Figure 2 shows some aspects of the implementation of the weighting function technique.
The parameter « is adjustable; points 7, correspond to poloidal angles 8, on a fixed mesh:
the integral fd‘rw is subdivided so as to provide the appropriate partial weights for each
poloidal meshpoint, w;. These partial weights are then stored dynamically in a packed array
whose elements have the structure (I.w;). Since the w; must all be smaller than 1, unpacking
the array is trivial. Figure 3 shows the relationship between the approximant w(r) and the
interaction function in the vicinity of a turning point resonance.

This numerical technique is designed to provide computational convenience tempered by
theoretical generalization. It is a physically motivated artifice which permits the wave damping
calculated through the quasilinear model to be used concurrently with a wave propagation
calculation; its design accomodates a wide variety of such propagation calculations. even
those which presume a uniform magnetic field.

For the case of Tokamak geometry, we introduce the change of variables w(r) — W (6,)
and set

Bo,, = bo / 8, W (8,,) Ex(6,).

The quantities b and W are functions of orbit invariants v, 8o as well as wave field parameters
w, k||, k1 and wave polarization at resonance. There is in general a certain group of gyro-center
orbits each within its own range of resonant interaction at 6,. The particles which populate
these orbits all experience the same field spectral energy density & at 6. though each with its
own orbit dependent wave-particle coupling strength W (6,). It is the distribution of population
over this orbit group which determines the absorption (or emission) at 6,,.

Figure 4 shows the phaseflow corresponding to the set of velocity space meshpoints
chosen to represent the ion distribution #. The abscissa corresponds to the poloidal angle.
0,. The ordinate is the cosine of the pitchangle along a gyro-center trajectory. The orbits
above the separatrix correspond to co-passing orbits. those below the separatrix correspond
to counter-passing orbits. and the elliptical trajectories correspond to trapped orbits. Since
kinetic energy is a constant of the unperturbed motion. these orbits are independent of vg.
The vertical curves in Figure 4 represent the relation »- = 0 in this space for a set of values vg.
The solid curves are those for which k| > 0 and the dotted curves are those for which k; < 0.
The intersections of the gyro-center trajectories and the curves v = 0 are the resonances
corresponding to positions of stationary wave-particle interaction phase. For k; = 0. the
vertical curves all collapse into a single vertical line passing through the common intersection of
the curves. That intersection becomes the turning point or bounce resonance point. For k) +# 0



the loci of points in the phase space at which wave-particle resonance occurs coincidentally
with & = 0, tangent resonance, is shown as the remaining curve in Figure 4. This curve,
of course. also goes through the turning point resonance. since there is no parallel Doppler
shift at that point. Figure 5 shows the interaction function and its variation with collisionality
in the vicinity of a turning point resonance. Also shown is the corresponding vicinity in the
gyro-center phase flow. Figure 6 shows the wave-particle interaction function and its variation
with collisionality and magnetic field inhomogeneity (B) in the vicinity of a field extremum
resonance. As the magnetic field becomes more uniform. the resonance broadens to fill the
envelope defined by the accumulation of gyro-phase incoherence due to collisions.

The differential power absorption can now be represented as the integral
dPrp

dé,
which is depicted in Figure 7. The depression in the power absorption near the fundamental

resonance is a reflection of the fact that for moderate k. only low energy particles experience
vanishingly small doppler shift.

= —27rfdv0 /d90 '!n’l)osinf)oi)owvgkﬁ(]?o (19)
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Figure Captions

FIG. 1. Trapped gyro-center trajectory single-cycle complements C and Ct. While on
C(C1) the incoherence associated with the most recent resonance pair occured over path C'(C).

FIG. 2. Implementation of the weighting function technique. The parameter « is ad-
Justable: points 7, correspond to poloidal angles 6, on a fixed mesh; the integral [ drw is
subdivided so as to provide the appropriate partial weights for each poloidal meshpoint, w;.

FIG. 3. Relationship between w(7) and the wave-particle interaction function. The
picture is drawn in the vicinity of turning point resonance

FIG. 4. Phaseflow corresponding to the set of velocity space meshpoints chosen to
represent the distribution 7. The abscissa is the arclength along the magnetic field measured
from the midplane normalized to the arclength from the midplane (minimum B) to the throat
(maximum B). The ordinate is the cosine of the pitchangle along a gyrocenter trajectory.
The orbits above the separatrix correspond to co-passing orbits, those below the separatrix
correspond to counter-passing orbits, and the elliptical trajectories correspond to trapped
orbits. Since kinetic energy is a constant of the motion, these orbits are independent of vg.
The vertical curves represent the relation v = w - kv - m{Q = 0 in this space for a set of
values vg on the chosen velocity mesh. The solid curves are those for which k; > 0 and the
dotted curves are those for which k| < 0. The intersections of the gyrocenter trajectories and
the curves v = 0 are the resonances corresponding to positions of stationary wave-particle
interaction phase. For k; = 0. the vertical curves all collapse into a single vertical line passing
through the common intersection of the curves. That intersection corresponds to the turning
point resonance. For k; # O the loci of points in the phase space at which wave-particle
resonance occurs coincidentally with » = 0, tangent resonance, is shown as the remaining
curve. This curve, of course, also goes through the turning point resonance, since there is no
parallel Doppler shift at that point.

FIG. 5. The wave-particle interaction function (the acceleration in the particle frame) and
its variation with collisionality in the vicinity of a turning point resonance. Also shown is the
corresponding gyro-center phase flow and resonance configuration

FIG. 6. The wave-particle interaction function and its variation with collisionality and
magnetic field inhomogeneity (B) in the vicinity of a field extremum resonance. As the
magnetic field becomes more uniform. the resonance broadens to fill the envelope defined by

the collisional erosion of gyro-phase coherence.

FIG. 7. Differential power absorption as a function of poloidal angle. The depression
in the power absorption near the fundamental resonance is a reflection of the fact that for
moderate k. only low energy particles experience vanishingly small doppler shift.
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